User Set-up for APKLVSR ESP32 Display, ESP32 S3 Bluetooth WiFi Development Board 4.3'' ESP32 S3 Resistive Touch Display ESP32 TN Module TFT Touchscreen Compatible with Arduino/LVGL

Hey Guys i am a beginner who is just starting out to work with LVGL on the ESP32 display i have. I am having difficulty setting it up. i am not aware of the pin connections or the overall device setup. the code that i am anticipating to run is also not running and instead i see a white screen.
The following is the description of the module i have. i would appreciate if someone can help me out to identify the user settings.
ESP32 Display, ESP32 S3 Development Board WiFi Bluetooth 4.3 Inch ESP32 Display TN Resistive Touch TFT Touch Screen Module, Compatible with Arduino/LVGL

Feature:
Adopts low-power 32-bit dual-core CPU and can be used as an application processor.
Main frequency up to 240MHz, computing power up to 600DMIPS
Built-in 520KB SRAM
32Mbit SPI flash standard
Support UART/SPI/I2C/PWM/ADC/DAC and other interfaces
Support OV2640 and OV7670 cameras, built-in flash
Support TF card, up to 4G.
Support uploading images via WiFi.
Support multiple sleep modes.
Built-in Lwip and FreeRTOS
Support STA/AP/STA+AP working mode
Support one-click Smart Config/AirKiss network configuration

Working voltage: 4.75-5.25V
SPIFlash default is 32Mbit.
Built-in: 520KB RAM.
Wi-Fi standard 802.11b/g/n/eli, Bluetooth 4.2BR/EDR and BLE.
Supported interfaces (2Mbps): UART, SPI, I2C, PWM.
Standard serial port speed is: 115200bit/s.
Spectrum range is 2400-2483.5MHz.
Antenna shape: IC antenna, gain 2dBi.
Image output format: JPEG (only support OV2640), BMP, grayscale

Receiving sensitivity CCK, 1Mbps: -90dBm. CCK, 11Mbps: -85dBm.
6Mbps (1/2 BPSK): -88dBm.
54Mbps (3/464-QAM): -70dBm.
MCS7 (65Mbps, 72.2Mbps): -67dBm.
Power consumption with flash off: 180mA at 5V
. Turn on flash and set brightness to maximum: 310mA
Security WPA/WPA2/WPA2-Enterprise/wPS.
Working temperature -20℃~70℃.
Storage environment: 40℃~125RH, <90%RH

Can you give a link to the actual board, please?
There might already be a pin setup for it.
Also, could you post the code you are trying, please?

Hi , Thank you for your reply. this is the amazon link to the board. https://www.amazon.it/dp/B0CWGV55HZ?ref_=pe_24968671_487309461_302_E_DDE_dt_1

currently whatever i am trying to run it gives me a white screen. i would like to test the graphics test code which is in the TFT_espi examples.

What you have is a Sunton ESP32-2432S028R with IL9341 graphics.
Have you set up the pin assignments?

ESP32-4827S043 Specifications-EN.pdf (1.2 MB)

Hi according to the above manual which i found according to it. it says that it has ILI9485 driver chip. moreover in the user_select. i tried selecting //#include <User_Setups/Setup70b_ESP32_S3_ILI9341.h> // Setup file for ESP32 S3 with SPI ILI9341. this set up. I still didnt see any response. would you happen to know what problem i am facing. Thank you

According to the first review of this board by “Bernhard”, it’s a Sunton ESP32-2432S028R with IL9341 graphics.
https://www.amazon.co.uk/APKLVSR-Development-Bluetooth-Touchscreen-Compatible/product-reviews/B0CSYPG716/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews
Are you using TFT_eSPI?
Have you set up the GPIO-to-graphics pin mapping?

Hi yes i am trying to use the TFT_espi library. and was trying to set it up . i have tried to use the default settings that is in the user_select files. but they dont seem to be working. Could you let me know how to find the GPIO pin mapping set up/

According to the first review. it also says that the TFT_espi library by bodmer does not work by default."- The well-known TFT-eSPI library from Bodmer requires a common SPI bus for the display and touch. This does not work here. A different library must be used for the touch controller and a separate SPI bus must be initialized for this.

  • Various example programs from the internet (e.g. witnessmenow/ESP32-Cheap-Yellow-Display) did not work on my display straight away. The following helped: use a different SPI bus for the touch controller (HSPI instead of VSPI); switch on the backlight LED using additional instructions: (pinMode(TFT_BL, OUTPUT); digitalWrite(TFT_BL, 1);)"

I’ve found a couple of setups.
Attached is a TFT_eSPI user file -
User_Setup.h (18.6 KB)
This post has some slightly different settings -
https://github.com/Bodmer/TFT_eSPI/discussions/2677
Have you read this tutorial?
https://randomnerdtutorials.com/cheap-yellow-display-esp32-2432s028r/

I use this setup for ESP32 Yellow (in main TFT_eSPI Dir) :

//                            USER DEFINED SETTINGS
//   Set driver type, fonts to be loaded, pins used and SPI control method etc
//
//   See the User_Setup_Select.h file if you wish to be able to define multiple
//   setups and then easily select which setup file is used by the compiler.
//
//   If this file is edited correctly then all the library example sketches should
//   run without the need to make any more changes for a particular hardware setup!
//   Note that some sketches are designed for a particular TFT pixel width/height


// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################

// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32

// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT

// STM32 8 bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS

// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT

// Display type -  only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI

// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER       // Generic driver for common displays
#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
//#define ST7735_DRIVER      // Define additional parameters below for this display
//#define ILI9163_DRIVER     // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER

// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:

// #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only

// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display

//  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
//  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red

// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below

// #define M5STACK

// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH  80
// #define TFT_WIDTH  128
// #define TFT_WIDTH  128 // ST7789 240 x 240 and 240 x 320
#define TFT_WIDTH  240
// #define TFT_WIDTH  320
// #define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
//#define TFT_HEIGHT 160 // ST7789 240 x 240
 #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240 //#define TFT_HEIGHT 480

// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:

// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128    // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset

// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.

// #define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF


// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################

// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);

 #define TFT_BL   21            // LED back-light control pin
 #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)



// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED       to NodeMCU pin VIN (or 5V, see below)
// Display SCK       to NodeMCU pin D5
// Display SDI/MOSI  to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET     to NodeMCU pin D4 (or RST, see below)
// Display CS        to NodeMCU pin D8 (or GND, see below)
// Display GND       to NodeMCU pin GND (0V)
// Display VCC       to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######

// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
//#define TFT_CS   PIN_D8  // Chip select control pin D8
//#define TFT_DC   PIN_D3  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1    // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V

//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen

//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only


// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######

// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined

//#define TFT_SPI_OVERLAP

// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS   PIN_D3
//#define TFT_DC   PIN_D5  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######

// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins

// #define TFT_MISO -1 
// #define TFT_MOSI 14
// #define TFT_SCLK 33
// #define TFT_CS   -1  // Chip select control pin
// #define TFT_DC    13  // Data Command control pin
// #define TFT_RST   12  // Reset pin (could connect to RST pin)
//#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST

// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins
//screen
#define TFT_MOSI 13 // In some display driver board, it might be written as "SDA" and so on.
#define TFT_MISO 12
#define TFT_SCLK 14
#define TFT_CS   15  // Chip select control pin
#define TFT_DC   2  // Data Command control pin
#define TFT_RST  -1  // Reset pin (could connect to Arduino RESET pin)
#define TFT_BL   21  // LED back-light

//touch
//#define TOUCH_CS 33  use TOUCH_CS to  Inlcude extensions/Touch.h
//#define TOUCH_MOSI 32
//#define TOUCH_MISO 39
//#define TOUCH_CLK 25
//#define SOFTSPI  //use VSPI for XPT touchscreen

//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only

// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   14  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   32  // LED back-light (required for M5Stack)

// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######

// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!

// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays

// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT

// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS   33  // Chip select control pin (library pulls permanently low
//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST  32  // Reset pin, toggles on startup

//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD    2  // Read strobe control pin

//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
//#define TFT_D1   13  // so a single register write sets/clears all bits.
//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
//#define TFT_D3   25  // TFT screen update performance.
//#define TFT_D4   17
//#define TFT_D5   16
//#define TFT_D6   27
//#define TFT_D7   14

// ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######

// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5

//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13

// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS   D5 // Chip select control pin to TFT CS
//#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6
//#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7

//#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset
                        // Use an Arduino pin for initial testing as connecting to processor reset
                        // may not work (pulse too short at power up?)

// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################

// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!

#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts

// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT


// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################

// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.

// #define SPI_FREQUENCY   1000000
// #define SPI_FREQUENCY   5000000
//#define SPI_FREQUENCY  10000000
//#define SPI_FREQUENCY  20000000
//#define SPI_FREQUENCY  27000000
//#define SPI_FREQUENCY  40000000
#define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
//#define SPI_FREQUENCY  65000000
 //#define SPI_FREQUENCY  80000000

// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY  20000000

// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
 #define SPI_TOUCH_FREQUENCY  2500000

// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT

// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!

// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.

// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect

// #define SUPPORT_TRANSACTIONS

and you can try with this sketch if want, is a work in progress for connect with ODB2 of car, but you can see if all work on screen:

/*  ESP32-2432S028
    Chip is ESP32-D0WD-V3 (revision v3.1)
    Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
    Crystal is 40MHz  MAC: d0:ef:76:5b:82:58 
    1) ESP32-2432S028R 2.8 inch 240×320 also known as the Cheap Yellow Display (CYD): https://makeradvisor.com/tools/cyd-cheap-yellow-display-esp32-2432s028r/
      SET UP INSTRUCTIONS: https://RandomNerdTutorials.com/cyd-lvgl/
    */
/*  Install the "lvgl" library version 9.X by kisvegabor to interface with the TFT Display - https://lvgl.io/
    *** IMPORTANT: lv_conf.h available on the internet will probably NOT work with the examples available at Random Nerd Tutorials ***
    *** YOU MUST USE THE lv_conf.h FILE PROVIDED IN THE LINK BELOW IN ORDER TO USE THE EXAMPLES FROM RANDOM NERD TUTORIALS ***
    FULL INSTRUCTIONS AVAILABLE ON HOW CONFIGURE THE LIBRARY: https://RandomNerdTutorials.com/cyd-lvgl/ or https://RandomNerdTutorials.com/esp32-tft-lvgl/   */
/*  Install the "TFT_eSPI" library by Bodmer to interface with the TFT Display - https://github.com/Bodmer/TFT_eSPI
    *** IMPORTANT: User_Setup.h available on the internet will probably NOT work with the examples available at Random Nerd Tutorials ***
    *** YOU MUST USE THE User_Setup.h FILE PROVIDED IN THE LINK BELOW IN ORDER TO USE THE EXAMPLES FROM RANDOM NERD TUTORIALS ***
    FULL INSTRUCTIONS AVAILABLE ON HOW CONFIGURE THE LIBRARY: https://RandomNerdTutorials.com/cyd-lvgl/ or https://RandomNerdTutorials.com/esp32-tft-lvgl/   */

#include <lvgl.h>
#include <TFT_eSPI.h>
#include "BluetoothSerial.h"
#include "ELMduino.h"  // https://github.com/PowerBroker2/ELMduino
//#include "WiFi.h"
// Install the "XPT2046_Touchscreen" library by Paul Stoffregen to use the Touchscreen - https://github.com/PaulStoffregen/XPT2046_Touchscreen - Note: this library doesn't require further configuration
#include <XPT2046_Touchscreen.h>

// Touchscreen pins
#define XPT2046_IRQ 36   // T_IRQ
#define XPT2046_MOSI 32  // T_DIN
#define XPT2046_MISO 39  // T_OUT
#define XPT2046_CLK 25   // T_CLK
#define XPT2046_CS 33    // T_CS

SPIClass touchscreenSPI = SPIClass(VSPI);
XPT2046_Touchscreen touchscreen(XPT2046_CS, XPT2046_IRQ);

#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 240

// Touchscreen coordinates: (x, y) and pressure (z)
int x, y, z, fatto, connessione;
unsigned long TimeAttuale = millis();

TFT_eSPI tft = TFT_eSPI();
#define DRAW_BUF_SIZE (SCREEN_WIDTH * SCREEN_HEIGHT / 10 * (LV_COLOR_DEPTH / 8))
uint32_t draw_buf[DRAW_BUF_SIZE / 4];

BluetoothSerial SerialBT;
#define ELM_PORT SerialBT
//#define DEBUG_PORT Serial
ELM327 myELM327;
uint32_t rpm = 0;
char TT[512];
String T = "";

// SCREEN: ui_Screen1
//void ui_Screen1_screen_init(void);
lv_obj_t* ui_Screen1;
lv_obj_t* ui_Led;
lv_obj_t* ui_InfoLB;
lv_obj_t* ui_LB1;
lv_obj_t* ui_Dropdown1;

// If logging is enabled, it will inform the user about what is happening in the library
void log_print(lv_log_level_t level, const char* buf) {
  LV_UNUSED(level);
  Serial.println(buf);
  Serial.flush();
}

// Get the Touchscreen data
void touchscreen_read(lv_indev_t* indev, lv_indev_data_t* data) {
  // Checks if Touchscreen was touched, and prints X, Y and Pressure (Z)
  if (touchscreen.tirqTouched() && touchscreen.touched()) {
    TS_Point p = touchscreen.getPoint();
    x = map(p.x, 265, 3800, 1, SCREEN_WIDTH);
    y = map(p.y, 300, 3785, 1, SCREEN_HEIGHT);
    z = p.z;
    data->state = LV_INDEV_STATE_PRESSED;
    // Set the coordinates
    data->point.x = x;
    data->point.y = y;
    // Print Touchscreen info about X, Y and Pressure (Z) on the Serial Monitor
    // Serial.print("X = ");
    // Serial.print(x);
    // Serial.print(" | Y = ");
    // Serial.print(y);
    // Serial.print(" | Pressure = ");
    // Serial.print(z);
    // Serial.println();
  } else {
    data->state = LV_INDEV_STATE_RELEASED;
  }
}
static void ui_event_Led(lv_event_t* e) {
  lv_event_code_t code = lv_event_get_code(e);
  lv_obj_t* obj = (lv_obj_t*)lv_event_get_target(e);
  if (code == LV_EVENT_VALUE_CHANGED) {
    Serial.println("CLICK");
    // _ui_state_modify(ui_Led, LV_STATE_PRESSED, _UI_MODIFY_STATE_ADD);
    LV_UNUSED(obj);
    //LV_LOG_USER("Toggled %s", lv_obj_has_state(obj, LV_STATE_CHECKED) ? "on" : "off");
  }
}

void lv_create_main_gui(void) {
  ui_Screen1 = lv_obj_create(NULL);
  //IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT//
  lv_disp_load_scr(ui_Screen1);
  lv_obj_clear_flag(ui_Screen1, LV_OBJ_FLAG_CLICKABLE | LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_SCROLLABLE | LV_OBJ_FLAG_SCROLL_ELASTIC | LV_OBJ_FLAG_SCROLL_MOMENTUM);  /// Flags
  lv_obj_set_scrollbar_mode(ui_Screen1, LV_SCROLLBAR_MODE_OFF);
  lv_obj_set_scroll_dir(ui_Screen1, LV_DIR_TOP);
  lv_obj_set_style_bg_color(ui_Screen1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_opa(ui_Screen1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_font(ui_Screen1, &lv_font_montserrat_14, LV_PART_MAIN | LV_STATE_DEFAULT);

  ui_Led = lv_btn_create(ui_Screen1);
  // lv_obj_add_event_cb(ui_Led, ui_event_Led, LV_EVENT_ALL, NULL);
  lv_obj_set_width(ui_Led, 10);
  lv_obj_set_height(ui_Led, 6);
  lv_obj_set_x(ui_Led, 145);
  lv_obj_set_y(ui_Led, -80);
  lv_obj_set_align(ui_Led, LV_ALIGN_CENTER);
  lv_obj_add_flag(ui_Led, LV_OBJ_FLAG_CHECKABLE);
  lv_obj_set_scrollbar_mode(ui_Led, LV_SCROLLBAR_MODE_OFF);
  lv_obj_set_style_radius(ui_Led, 8, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x042415), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_color(ui_Led, lv_color_hex(0x6B6D18), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_width(ui_Led, 2, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x5AFDE9), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_shadow_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_shadow_width(ui_Led, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_shadow_spread(ui_Led, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_radius(ui_Led, 8, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x8CFF00), LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_border_color(ui_Led, lv_color_hex(0xD9FF01), LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_border_width(ui_Led, 1, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_border_side(ui_Led, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13FF02), LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_PRESSED);
  lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_PRESSED);

  ui_InfoLB = lv_label_create(ui_Screen1); /* LABEL INFO SCROLL */
  lv_obj_set_width(ui_InfoLB, 316);
  lv_obj_set_height(ui_InfoLB, LV_SIZE_CONTENT);  /// 16
  lv_obj_set_x(ui_InfoLB, 0);
  lv_obj_set_y(ui_InfoLB, -105);
  lv_obj_set_align(ui_InfoLB, LV_ALIGN_CENTER);
  lv_label_set_long_mode(ui_InfoLB, LV_LABEL_LONG_SCROLL_CIRCULAR);
  lv_label_set_text(ui_InfoLB, "Collegamento al Bluetooth im corso .... Collegamento al Bluetooth im corso .... ");
  lv_obj_clear_flag(ui_InfoLB, LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_CLICK_FOCUSABLE | LV_OBJ_FLAG_GESTURE_BUBBLE | LV_OBJ_FLAG_SNAPPABLE);  /// Flags
  lv_obj_set_style_text_color(ui_InfoLB, lv_color_hex(0xFAFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_align(ui_InfoLB, LV_TEXT_ALIGN_AUTO, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_radius(ui_InfoLB, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_color(ui_InfoLB, lv_color_hex(0x010920), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_align(ui_InfoLB, LV_TEXT_ALIGN_CENTER, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_color(ui_InfoLB, lv_color_hex(0x001F2F), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_main_stop(ui_InfoLB, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_stop(ui_InfoLB, 200, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_dir(ui_InfoLB, LV_GRAD_DIR_VER, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_color(ui_InfoLB, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_width(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_side(ui_InfoLB, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_pad_left(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_pad_right(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_pad_top(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_pad_bottom(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);

  ui_LB1 = lv_label_create(ui_Screen1); /* LABEL 1 */
  lv_obj_set_width(ui_LB1, 57);
  lv_obj_set_height(ui_LB1, LV_SIZE_CONTENT);  /// 1
  lv_obj_set_x(ui_LB1, 98);
  lv_obj_set_y(ui_LB1, -79);
  lv_obj_set_align(ui_LB1, LV_ALIGN_CENTER);
  //lv_label_set_long_mode(ui_LB1, LV_LABEL_LONG_SCROLL_CIRCULAR);
  lv_label_set_text(ui_LB1, "00000");
  lv_obj_clear_flag(ui_LB1, LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_CLICK_FOCUSABLE | LV_OBJ_FLAG_GESTURE_BUBBLE | LV_OBJ_FLAG_SNAPPABLE | LV_OBJ_FLAG_SCROLLABLE | LV_OBJ_FLAG_SCROLL_ELASTIC | LV_OBJ_FLAG_SCROLL_MOMENTUM | LV_OBJ_FLAG_SCROLL_CHAIN);  /// Flags
  lv_obj_set_style_text_color(ui_LB1, lv_color_hex(0xDDFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_text_align(ui_LB1, LV_TEXT_ALIGN_RIGHT, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_radius(ui_LB1, 6, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_color(ui_LB1, lv_color_hex(0x004E8E), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_color(ui_LB1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_main_stop(ui_LB1, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_stop(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_bg_grad_dir(ui_LB1, LV_GRAD_DIR_VER, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_color(ui_LB1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_width(ui_LB1, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
  lv_obj_set_style_border_side(ui_LB1, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
}

void setup() {
  //String LVGL_Arduino = String("LVGL Library Version: ") + lv_version_major() + "." + lv_version_minor() + "." + lv_version_patch();
  Serial.begin(115200);
  delay(100);
  //Serial.println(LVGL_Arduino);
  // Start LVGL
  lv_init();
  // Register print function for debugging
  lv_log_register_print_cb(log_print);

  // Start the SPI for the touchscreen and init the touchscreen
  touchscreenSPI.begin(XPT2046_CLK, XPT2046_MISO, XPT2046_MOSI, XPT2046_CS);
  touchscreen.begin(touchscreenSPI);
  // Set the Touchscreen rotation in landscape mode
  // Note: in some displays, the touchscreen might be upside down, so you might need to set the rotation to 1: touchscreen.setRotation(1);
  touchscreen.setRotation(1);
  // Create a display object
  lv_display_t* disp;
  // Initialize the TFT display using the TFT_eSPI library
  disp = lv_tft_espi_create(SCREEN_WIDTH, SCREEN_HEIGHT, draw_buf, sizeof(draw_buf));
  tft.setRotation(1);
  tft.invertDisplay(1);
  // Initialize an LVGL input device object (Touchscreen)
  lv_indev_t* indev = lv_indev_create();
  lv_indev_set_type(indev, LV_INDEV_TYPE_POINTER);
  // Set the callback function to read Touchscreen input
  lv_indev_set_read_cb(indev, touchscreen_read);

  // Function to draw the GUI (text, buttons and sliders)
  lv_create_main_gui();
  lv_refr_now(NULL);

  //SerialBT.setPin("1234");
  ELM_PORT.begin("ArduHUD", true);
  if (!ELM_PORT.connect("OBDII")) {
    Serial.println("Couldn't connect to OBD scanner - Phase 1");
    //while(1);
    T = "Collwgamento al BT FALLITO";
    TT[(T.length() + 1)];
    T.toCharArray(TT, T.length() + 1);
    lv_label_set_text(ui_InfoLB, TT);
    connessione = 0;
  } else {
    connessione = 1;
    Serial.println("Connesso al BT - Phase 1");
    lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13F0FF), LV_PART_MAIN | LV_STATE_DEFAULT);  // ombra blu
    lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_DEFAULT);
    lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_DEFAULT);
    lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
  }
  if (connessione == 1) {
    if (!myELM327.begin(ELM_PORT, true, 2000)) {
      Serial.println("Couldn't connect to OBD scanner - Phase 2");
      //while (1);
      T = "NON riesco a connettermi a ELM327 .......";
      TT[(T.length() + 1)];
      T.toCharArray(TT, T.length() + 1);
      lv_label_set_text(ui_InfoLB, TT);
    } else {
      connessione = 2;
      T = "Connessione a ELM327 OK .......";
      TT[(T.length() + 1)];
      T.toCharArray(TT, T.length() + 1);
      lv_label_set_text(ui_InfoLB, TT);
      lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x8CFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_border_color(ui_Led, lv_color_hex(0xD9FF01), LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_border_width(ui_Led, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_border_side(ui_Led, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13FF02), LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
      lv_refr_now(NULL);
    }
  }
}

void loop() {
  lv_task_handler();  // let the GUI do its work
  lv_tick_inc(5);     // tell LVGL how much time has passed
  if (connessione == 2) {
    float tempRPM = myELM327.rpm();
    if (myELM327.nb_rx_state == ELM_SUCCESS) {
      rpm = (uint32_t)tempRPM;
      Serial.print("RPM: ");
      Serial.println(rpm);
    } else if (myELM327.nb_rx_state != ELM_GETTING_MSG)
      myELM327.printError();
  }
  delay(5);  // let this time pass
}

This Sunton displays are also known as Cheap Yello Display (CYD). You can find all board definitions and pin assignments on github. It has worked very well for me.