I use this setup for ESP32 Yellow (in main TFT_eSPI Dir) :
// USER DEFINED SETTINGS
// Set driver type, fonts to be loaded, pins used and SPI control method etc
//
// See the User_Setup_Select.h file if you wish to be able to define multiple
// setups and then easily select which setup file is used by the compiler.
//
// If this file is edited correctly then all the library example sketches should
// run without the need to make any more changes for a particular hardware setup!
// Note that some sketches are designed for a particular TFT pixel width/height
// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################
// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32
// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT
// STM32 8 bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS
// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
// Display type - only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI
// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER // Generic driver for common displays
#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
//#define ST7735_DRIVER // Define additional parameters below for this display
//#define ILI9163_DRIVER // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER
// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:
// #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only
// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display
// #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue
// #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red
// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below
// #define M5STACK
// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH 80
// #define TFT_WIDTH 128
// #define TFT_WIDTH 128 // ST7789 240 x 240 and 240 x 320
#define TFT_WIDTH 240
// #define TFT_WIDTH 320
// #define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
//#define TFT_HEIGHT 160 // ST7789 240 x 240
#define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240 //#define TFT_HEIGHT 480
// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:
// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128 // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset
// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.
// #define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF
// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################
// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);
#define TFT_BL 21 // LED back-light control pin
#define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW)
// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED to NodeMCU pin VIN (or 5V, see below)
// Display SCK to NodeMCU pin D5
// Display SDI/MOSI to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET to NodeMCU pin D4 (or RST, see below)
// Display CS to NodeMCU pin D8 (or GND, see below)
// Display GND to NodeMCU pin GND (0V)
// Display VCC to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
//#define TFT_CS PIN_D8 // Chip select control pin D8
//#define TFT_DC PIN_D3 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin)
//#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen
//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only
// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######
// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP
// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS PIN_D3
//#define TFT_DC PIN_D5 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######
// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins
// #define TFT_MISO -1
// #define TFT_MOSI 14
// #define TFT_SCLK 33
// #define TFT_CS -1 // Chip select control pin
// #define TFT_DC 13 // Data Command control pin
// #define TFT_RST 12 // Reset pin (could connect to RST pin)
//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins
//screen
#define TFT_MOSI 13 // In some display driver board, it might be written as "SDA" and so on.
#define TFT_MISO 12
#define TFT_SCLK 14
#define TFT_CS 15 // Chip select control pin
#define TFT_DC 2 // Data Command control pin
#define TFT_RST -1 // Reset pin (could connect to Arduino RESET pin)
#define TFT_BL 21 // LED back-light
//touch
//#define TOUCH_CS 33 use TOUCH_CS to Inlcude extensions/Touch.h
//#define TOUCH_MOSI 32
//#define TOUCH_MISO 39
//#define TOUCH_CLK 25
//#define SOFTSPI //use VSPI for XPT touchscreen
//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only
// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 14 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 32 // LED back-light (required for M5Stack)
// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ######
// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!
// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays
// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS 33 // Chip select control pin (library pulls permanently low
//#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST 32 // Reset pin, toggles on startup
//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD 2 // Read strobe control pin
//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus
//#define TFT_D1 13 // so a single register write sets/clears all bits.
//#define TFT_D2 26 // Pins can be randomly assigned, this does not affect
//#define TFT_D3 25 // TFT screen update performance.
//#define TFT_D4 17
//#define TFT_D5 16
//#define TFT_D6 27
//#define TFT_D7 14
// ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ######
// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5
//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13
// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS D5 // Chip select control pin to TFT CS
//#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6
//#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset
// Use an Arduino pin for initial testing as connecting to processor reset
// may not work (pulse too short at power up?)
// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################
// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT
// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################
// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// #define SPI_FREQUENCY 1000000
// #define SPI_FREQUENCY 5000000
//#define SPI_FREQUENCY 10000000
//#define SPI_FREQUENCY 20000000
//#define SPI_FREQUENCY 27000000
//#define SPI_FREQUENCY 40000000
#define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
//#define SPI_FREQUENCY 65000000
//#define SPI_FREQUENCY 80000000
// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY 20000000
// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY 2500000
// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT
// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!
// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.
// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect
// #define SUPPORT_TRANSACTIONS
and you can try with this sketch if want, is a work in progress for connect with ODB2 of car, but you can see if all work on screen:
/* ESP32-2432S028
Chip is ESP32-D0WD-V3 (revision v3.1)
Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 40MHz MAC: d0:ef:76:5b:82:58
1) ESP32-2432S028R 2.8 inch 240×320 also known as the Cheap Yellow Display (CYD): https://makeradvisor.com/tools/cyd-cheap-yellow-display-esp32-2432s028r/
SET UP INSTRUCTIONS: https://RandomNerdTutorials.com/cyd-lvgl/
*/
/* Install the "lvgl" library version 9.X by kisvegabor to interface with the TFT Display - https://lvgl.io/
*** IMPORTANT: lv_conf.h available on the internet will probably NOT work with the examples available at Random Nerd Tutorials ***
*** YOU MUST USE THE lv_conf.h FILE PROVIDED IN THE LINK BELOW IN ORDER TO USE THE EXAMPLES FROM RANDOM NERD TUTORIALS ***
FULL INSTRUCTIONS AVAILABLE ON HOW CONFIGURE THE LIBRARY: https://RandomNerdTutorials.com/cyd-lvgl/ or https://RandomNerdTutorials.com/esp32-tft-lvgl/ */
/* Install the "TFT_eSPI" library by Bodmer to interface with the TFT Display - https://github.com/Bodmer/TFT_eSPI
*** IMPORTANT: User_Setup.h available on the internet will probably NOT work with the examples available at Random Nerd Tutorials ***
*** YOU MUST USE THE User_Setup.h FILE PROVIDED IN THE LINK BELOW IN ORDER TO USE THE EXAMPLES FROM RANDOM NERD TUTORIALS ***
FULL INSTRUCTIONS AVAILABLE ON HOW CONFIGURE THE LIBRARY: https://RandomNerdTutorials.com/cyd-lvgl/ or https://RandomNerdTutorials.com/esp32-tft-lvgl/ */
#include <lvgl.h>
#include <TFT_eSPI.h>
#include "BluetoothSerial.h"
#include "ELMduino.h" // https://github.com/PowerBroker2/ELMduino
//#include "WiFi.h"
// Install the "XPT2046_Touchscreen" library by Paul Stoffregen to use the Touchscreen - https://github.com/PaulStoffregen/XPT2046_Touchscreen - Note: this library doesn't require further configuration
#include <XPT2046_Touchscreen.h>
// Touchscreen pins
#define XPT2046_IRQ 36 // T_IRQ
#define XPT2046_MOSI 32 // T_DIN
#define XPT2046_MISO 39 // T_OUT
#define XPT2046_CLK 25 // T_CLK
#define XPT2046_CS 33 // T_CS
SPIClass touchscreenSPI = SPIClass(VSPI);
XPT2046_Touchscreen touchscreen(XPT2046_CS, XPT2046_IRQ);
#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 240
// Touchscreen coordinates: (x, y) and pressure (z)
int x, y, z, fatto, connessione;
unsigned long TimeAttuale = millis();
TFT_eSPI tft = TFT_eSPI();
#define DRAW_BUF_SIZE (SCREEN_WIDTH * SCREEN_HEIGHT / 10 * (LV_COLOR_DEPTH / 8))
uint32_t draw_buf[DRAW_BUF_SIZE / 4];
BluetoothSerial SerialBT;
#define ELM_PORT SerialBT
//#define DEBUG_PORT Serial
ELM327 myELM327;
uint32_t rpm = 0;
char TT[512];
String T = "";
// SCREEN: ui_Screen1
//void ui_Screen1_screen_init(void);
lv_obj_t* ui_Screen1;
lv_obj_t* ui_Led;
lv_obj_t* ui_InfoLB;
lv_obj_t* ui_LB1;
lv_obj_t* ui_Dropdown1;
// If logging is enabled, it will inform the user about what is happening in the library
void log_print(lv_log_level_t level, const char* buf) {
LV_UNUSED(level);
Serial.println(buf);
Serial.flush();
}
// Get the Touchscreen data
void touchscreen_read(lv_indev_t* indev, lv_indev_data_t* data) {
// Checks if Touchscreen was touched, and prints X, Y and Pressure (Z)
if (touchscreen.tirqTouched() && touchscreen.touched()) {
TS_Point p = touchscreen.getPoint();
x = map(p.x, 265, 3800, 1, SCREEN_WIDTH);
y = map(p.y, 300, 3785, 1, SCREEN_HEIGHT);
z = p.z;
data->state = LV_INDEV_STATE_PRESSED;
// Set the coordinates
data->point.x = x;
data->point.y = y;
// Print Touchscreen info about X, Y and Pressure (Z) on the Serial Monitor
// Serial.print("X = ");
// Serial.print(x);
// Serial.print(" | Y = ");
// Serial.print(y);
// Serial.print(" | Pressure = ");
// Serial.print(z);
// Serial.println();
} else {
data->state = LV_INDEV_STATE_RELEASED;
}
}
static void ui_event_Led(lv_event_t* e) {
lv_event_code_t code = lv_event_get_code(e);
lv_obj_t* obj = (lv_obj_t*)lv_event_get_target(e);
if (code == LV_EVENT_VALUE_CHANGED) {
Serial.println("CLICK");
// _ui_state_modify(ui_Led, LV_STATE_PRESSED, _UI_MODIFY_STATE_ADD);
LV_UNUSED(obj);
//LV_LOG_USER("Toggled %s", lv_obj_has_state(obj, LV_STATE_CHECKED) ? "on" : "off");
}
}
void lv_create_main_gui(void) {
ui_Screen1 = lv_obj_create(NULL);
//IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT//
lv_disp_load_scr(ui_Screen1);
lv_obj_clear_flag(ui_Screen1, LV_OBJ_FLAG_CLICKABLE | LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_SCROLLABLE | LV_OBJ_FLAG_SCROLL_ELASTIC | LV_OBJ_FLAG_SCROLL_MOMENTUM); /// Flags
lv_obj_set_scrollbar_mode(ui_Screen1, LV_SCROLLBAR_MODE_OFF);
lv_obj_set_scroll_dir(ui_Screen1, LV_DIR_TOP);
lv_obj_set_style_bg_color(ui_Screen1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_opa(ui_Screen1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_font(ui_Screen1, &lv_font_montserrat_14, LV_PART_MAIN | LV_STATE_DEFAULT);
ui_Led = lv_btn_create(ui_Screen1);
// lv_obj_add_event_cb(ui_Led, ui_event_Led, LV_EVENT_ALL, NULL);
lv_obj_set_width(ui_Led, 10);
lv_obj_set_height(ui_Led, 6);
lv_obj_set_x(ui_Led, 145);
lv_obj_set_y(ui_Led, -80);
lv_obj_set_align(ui_Led, LV_ALIGN_CENTER);
lv_obj_add_flag(ui_Led, LV_OBJ_FLAG_CHECKABLE);
lv_obj_set_scrollbar_mode(ui_Led, LV_SCROLLBAR_MODE_OFF);
lv_obj_set_style_radius(ui_Led, 8, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x042415), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_color(ui_Led, lv_color_hex(0x6B6D18), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_width(ui_Led, 2, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x5AFDE9), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_width(ui_Led, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_spread(ui_Led, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_radius(ui_Led, 8, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x8CFF00), LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_border_color(ui_Led, lv_color_hex(0xD9FF01), LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_border_width(ui_Led, 1, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_border_side(ui_Led, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13FF02), LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_PRESSED);
lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_PRESSED);
ui_InfoLB = lv_label_create(ui_Screen1); /* LABEL INFO SCROLL */
lv_obj_set_width(ui_InfoLB, 316);
lv_obj_set_height(ui_InfoLB, LV_SIZE_CONTENT); /// 16
lv_obj_set_x(ui_InfoLB, 0);
lv_obj_set_y(ui_InfoLB, -105);
lv_obj_set_align(ui_InfoLB, LV_ALIGN_CENTER);
lv_label_set_long_mode(ui_InfoLB, LV_LABEL_LONG_SCROLL_CIRCULAR);
lv_label_set_text(ui_InfoLB, "Collegamento al Bluetooth im corso .... Collegamento al Bluetooth im corso .... ");
lv_obj_clear_flag(ui_InfoLB, LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_CLICK_FOCUSABLE | LV_OBJ_FLAG_GESTURE_BUBBLE | LV_OBJ_FLAG_SNAPPABLE); /// Flags
lv_obj_set_style_text_color(ui_InfoLB, lv_color_hex(0xFAFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_align(ui_InfoLB, LV_TEXT_ALIGN_AUTO, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_radius(ui_InfoLB, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_color(ui_InfoLB, lv_color_hex(0x010920), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_align(ui_InfoLB, LV_TEXT_ALIGN_CENTER, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_color(ui_InfoLB, lv_color_hex(0x001F2F), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_main_stop(ui_InfoLB, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_stop(ui_InfoLB, 200, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_dir(ui_InfoLB, LV_GRAD_DIR_VER, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_color(ui_InfoLB, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_opa(ui_InfoLB, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_width(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_side(ui_InfoLB, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_pad_left(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_pad_right(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_pad_top(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_pad_bottom(ui_InfoLB, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
ui_LB1 = lv_label_create(ui_Screen1); /* LABEL 1 */
lv_obj_set_width(ui_LB1, 57);
lv_obj_set_height(ui_LB1, LV_SIZE_CONTENT); /// 1
lv_obj_set_x(ui_LB1, 98);
lv_obj_set_y(ui_LB1, -79);
lv_obj_set_align(ui_LB1, LV_ALIGN_CENTER);
//lv_label_set_long_mode(ui_LB1, LV_LABEL_LONG_SCROLL_CIRCULAR);
lv_label_set_text(ui_LB1, "00000");
lv_obj_clear_flag(ui_LB1, LV_OBJ_FLAG_PRESS_LOCK | LV_OBJ_FLAG_CLICK_FOCUSABLE | LV_OBJ_FLAG_GESTURE_BUBBLE | LV_OBJ_FLAG_SNAPPABLE | LV_OBJ_FLAG_SCROLLABLE | LV_OBJ_FLAG_SCROLL_ELASTIC | LV_OBJ_FLAG_SCROLL_MOMENTUM | LV_OBJ_FLAG_SCROLL_CHAIN); /// Flags
lv_obj_set_style_text_color(ui_LB1, lv_color_hex(0xDDFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_text_align(ui_LB1, LV_TEXT_ALIGN_RIGHT, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_radius(ui_LB1, 6, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_color(ui_LB1, lv_color_hex(0x004E8E), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_color(ui_LB1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_main_stop(ui_LB1, 0, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_stop(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_grad_dir(ui_LB1, LV_GRAD_DIR_VER, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_color(ui_LB1, lv_color_hex(0x000000), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_opa(ui_LB1, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_width(ui_LB1, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_side(ui_LB1, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
}
void setup() {
//String LVGL_Arduino = String("LVGL Library Version: ") + lv_version_major() + "." + lv_version_minor() + "." + lv_version_patch();
Serial.begin(115200);
delay(100);
//Serial.println(LVGL_Arduino);
// Start LVGL
lv_init();
// Register print function for debugging
lv_log_register_print_cb(log_print);
// Start the SPI for the touchscreen and init the touchscreen
touchscreenSPI.begin(XPT2046_CLK, XPT2046_MISO, XPT2046_MOSI, XPT2046_CS);
touchscreen.begin(touchscreenSPI);
// Set the Touchscreen rotation in landscape mode
// Note: in some displays, the touchscreen might be upside down, so you might need to set the rotation to 1: touchscreen.setRotation(1);
touchscreen.setRotation(1);
// Create a display object
lv_display_t* disp;
// Initialize the TFT display using the TFT_eSPI library
disp = lv_tft_espi_create(SCREEN_WIDTH, SCREEN_HEIGHT, draw_buf, sizeof(draw_buf));
tft.setRotation(1);
tft.invertDisplay(1);
// Initialize an LVGL input device object (Touchscreen)
lv_indev_t* indev = lv_indev_create();
lv_indev_set_type(indev, LV_INDEV_TYPE_POINTER);
// Set the callback function to read Touchscreen input
lv_indev_set_read_cb(indev, touchscreen_read);
// Function to draw the GUI (text, buttons and sliders)
lv_create_main_gui();
lv_refr_now(NULL);
//SerialBT.setPin("1234");
ELM_PORT.begin("ArduHUD", true);
if (!ELM_PORT.connect("OBDII")) {
Serial.println("Couldn't connect to OBD scanner - Phase 1");
//while(1);
T = "Collwgamento al BT FALLITO";
TT[(T.length() + 1)];
T.toCharArray(TT, T.length() + 1);
lv_label_set_text(ui_InfoLB, TT);
connessione = 0;
} else {
connessione = 1;
Serial.println("Connesso al BT - Phase 1");
lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13F0FF), LV_PART_MAIN | LV_STATE_DEFAULT); // ombra blu
lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
}
if (connessione == 1) {
if (!myELM327.begin(ELM_PORT, true, 2000)) {
Serial.println("Couldn't connect to OBD scanner - Phase 2");
//while (1);
T = "NON riesco a connettermi a ELM327 .......";
TT[(T.length() + 1)];
T.toCharArray(TT, T.length() + 1);
lv_label_set_text(ui_InfoLB, TT);
} else {
connessione = 2;
T = "Connessione a ELM327 OK .......";
TT[(T.length() + 1)];
T.toCharArray(TT, T.length() + 1);
lv_label_set_text(ui_InfoLB, TT);
lv_obj_set_style_bg_color(ui_Led, lv_color_hex(0x8CFF00), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_bg_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_color(ui_Led, lv_color_hex(0xD9FF01), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_opa(ui_Led, 255, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_width(ui_Led, 1, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_border_side(ui_Led, LV_BORDER_SIDE_FULL, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_color(ui_Led, lv_color_hex(0x13FF02), LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_opa(ui_Led, 128, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_width(ui_Led, 10, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_obj_set_style_shadow_spread(ui_Led, 5, LV_PART_MAIN | LV_STATE_DEFAULT);
lv_refr_now(NULL);
}
}
}
void loop() {
lv_task_handler(); // let the GUI do its work
lv_tick_inc(5); // tell LVGL how much time has passed
if (connessione == 2) {
float tempRPM = myELM327.rpm();
if (myELM327.nb_rx_state == ELM_SUCCESS) {
rpm = (uint32_t)tempRPM;
Serial.print("RPM: ");
Serial.println(rpm);
} else if (myELM327.nb_rx_state != ELM_GETTING_MSG)
myELM327.printError();
}
delay(5); // let this time pass
}