Porting LVGL to STM32H7

Description

I’m currently in the process of porting LVGL to an STM32H743II and keep facing a hang -> infinite loop within the lvgl_task_handler function.

What MCU/Processor/Board and compiler are you using?

STM32H743II with an LTDC RGB Display.

What do you want to achieve?

I just want to get LVGL running on this board. I know other individuals have achieved this for the H7 but no ports or examples exist.

What have you tried so far?

Following the porting guide and suggestions from other forum postings.

Code to reproduce

I’ve kept all the code within the main for now as to avoid include/pathing errors until I get this functional.

The code block(s) should be between ```c and ``` tags:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "../American_Wasteland.h"
#include "../mainCap.h"
#include "../lvgl/lvgl.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
 LTDC_LayerCfgTypeDef pLayerCfg = {0};

 /*********************
  *      DEFINES
  *********************/

 /* DMA Stream parameters definitions. You can modify these parameters to select
    a different DMA Stream and/or channel.
    But note that only DMA2 Streams are capable of Memory to Memory transfers. */
 #define DMA_STREAM               DMA2_Stream0
 #define DMA_CHANNEL              0x00000000U;
 #define DMA_STREAM_IRQ           DMA2_Stream0_IRQn
 #define DMA_STREAM_IRQHANDLER    DMA2_Stream0_IRQHandler

 #if TFT_NO_TEARING
 #define ZONES               4       /*Divide the screen into zones to handle tearing effect*/
 #else
 #define ZONES               1
 #endif

 #define VSYNC               OTM8009A_800X480_VSYNC
 #define VBP                 OTM8009A_800X480_VBP
 #define VFP                 OTM8009A_800X480_VFP
 #define VACT                OTM8009A_800X480_HEIGHT
 #define HSYNC               OTM8009A_800X480_HSYNC
 #define HBP                 OTM8009A_800X480_HBP
 #define HFP                 OTM8009A_800X480_HFP
 #define HACT                (OTM8009A_800X480_WIDTH / ZONES)

 #define LAYER0_ADDRESS               (uint32_t)&image_data_American_Wasteland


/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

LTDC_HandleTypeDef hltdc;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_LTDC_Init(void);
/* USER CODE BEGIN PFP */
static void CPU_CACHE_Enable(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

extern LTDC_HandleTypeDef hltdc_discovery;


#if LV_COLOR_DEPTH == 16
static uint16_t * my_fb = (uint16_t *)LAYER0_ADDRESS;
#else
static uint32_t * my_fb = (uint32_t *)LAYER0_ADDRESS;
#endif

static lv_disp_drv_t disp_drv;

static DMA_HandleTypeDef     DmaHandle;
static lv_disp_drv_t disp_drv;
static volatile int32_t x1_flush;
static volatile int32_t y1_flush;
static volatile int32_t x2_flush;
static volatile int32_t y2_flush;
static volatile int32_t y_flush_act;
static volatile const lv_color_t * buf_to_flush;



/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	CPU_CACHE_Enable();
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
  MX_GPIO_Init();
  MX_LTDC_Init();


  lv_init();
  tft_init();
  lv_ex_get_started_1();
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  /* USER CODE BEGIN 2 */
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */

  while (1)
  {
	  lv_task_handler();
	  HAL_Delay(5);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
  /** Macro to configure the PLL clock source
  */
  __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSI);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC;
  PeriphClkInitStruct.PLL3.PLL3M = 32;
  PeriphClkInitStruct.PLL3.PLL3N = 129;
  PeriphClkInitStruct.PLL3.PLL3P = 2;
  PeriphClkInitStruct.PLL3.PLL3Q = 2;
  PeriphClkInitStruct.PLL3.PLL3R = 2;
  PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_1;
  PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE;
  PeriphClkInitStruct.PLL3.PLL3FRACN = 0;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief LTDC Initialization Function
  * @param None
  * @retval None
  */
static void MX_LTDC_Init(void)
{

  /* USER CODE BEGIN LTDC_Init 0 */

  /* USER CODE END LTDC_Init 0 */

  LTDC_LayerCfgTypeDef pLayerCfg = {0};

  /* USER CODE BEGIN LTDC_Init 1 */

  /* USER CODE END LTDC_Init 1 */
  hltdc.Instance = LTDC;
  hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
  hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
  hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
  hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
  hltdc.Init.HorizontalSync = 7;
  hltdc.Init.VerticalSync = 3;
  hltdc.Init.AccumulatedHBP = 14;
  hltdc.Init.AccumulatedVBP = 5;
  hltdc.Init.AccumulatedActiveW = 1040;
  hltdc.Init.AccumulatedActiveH = 600;
  hltdc.Init.TotalWidth = 1100;
  hltdc.Init.TotalHeigh = 603;
  hltdc.Init.Backcolor.Blue = 255;
  hltdc.Init.Backcolor.Green = 0;
  hltdc.Init.Backcolor.Red = 255;
  if (HAL_LTDC_Init(&hltdc) != HAL_OK)
  {
    Error_Handler();
  }
  pLayerCfg.WindowX0 = 0;
  pLayerCfg.WindowX1 = 1040;
  pLayerCfg.WindowY0 = 0;
  pLayerCfg.WindowY1 = 206;
  pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
  pLayerCfg.Alpha = 255;
  pLayerCfg.Alpha0 = 0;
  pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
  pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
  pLayerCfg.FBStartAdress = LAYER0_ADDRESS;
  pLayerCfg.ImageWidth = 479;
  pLayerCfg.ImageHeight = 206;
  pLayerCfg.Backcolor.Blue = 0;
  pLayerCfg.Backcolor.Green = 0;
  pLayerCfg.Backcolor.Red = 255;
  if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN LTDC_Init 2 */
  //pLayerCfg.FBStartAdress = (uint32_t)&image_data_test_image;
  /* USER CODE END LTDC_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOI_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, GPIO_PIN_SET);

  /*Configure GPIO pin : PB5 */
  GPIO_InitStruct.Pin = GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
static void CPU_CACHE_Enable(void)
{
  /* Enable I-Cache */
  SCB_EnableICache();

  /* Enable D-Cache */
  SCB_EnableDCache();
}



static void tft_flush_cb(lv_disp_drv_t * drv, const lv_area_t * area, lv_color_t * color_p)
{
//    lv_disp_flush_ready(drv);
//    return;
	SCB_CleanInvalidateDCache();

	/*Truncate the area to the screen*/
	int32_t act_x1 = area->x1 < 0 ? 0 : area->x1;
	int32_t act_y1 = area->y1 < 0 ? 0 : area->y1;
	int32_t act_x2 = area->x2 > LV_HOR_RES - 1 ? LV_HOR_RES - 1 : area->x2;
	int32_t act_y2 = area->y2 > LV_VER_RES - 1 ? LV_VER_RES - 1 : area->y2;

	x1_flush = act_x1;
	y1_flush = act_y1;
	x2_flush = act_x2;
	y2_flush = act_y2;
	y_flush_act = act_y1;
	buf_to_flush = color_p;

	/*Use DMA instead of DMA2D to leave it free for GPU*/
	HAL_StatusTypeDef err;
	err = HAL_DMA_Start_IT(&DmaHandle,(uint32_t)buf_to_flush, (uint32_t)&my_fb[y_flush_act * LV_HOR_RES + x1_flush],
			  (x2_flush - x1_flush + 1));
	if(err != HAL_OK)
	{
		while(1);	/*Halt on error*/
	}
}




void tft_init(void){

	DMA_Config();

	static lv_disp_buf_t disp_buf;
	static lv_color_t buf[LV_HOR_RES_MAX * LV_VER_RES_MAX / 10];                     /*Declare a buffer for 1/10 screen size*/
	lv_disp_buf_init(&disp_buf, buf, NULL, LV_HOR_RES_MAX * LV_VER_RES_MAX / 10);    /*Initialize the display buffer*/

	lv_disp_drv_t disp_drv;               /*Descriptor of a display driver*/
	lv_disp_drv_init(&disp_drv);          /*Basic initialization*/
	disp_drv.flush_cb = tft_flush_cb;    /*Set your driver function*/
	disp_drv.buffer = &disp_buf;          /*Assign the buffer to the display*/
	lv_disp_drv_register(&disp_drv);      /*Finally register the driver*/



}

static void DMA_TransferComplete(DMA_HandleTypeDef *han)
{
    y_flush_act ++;

    if(y_flush_act > y2_flush) {
    	SCB_CleanInvalidateDCache();
    	SCB_InvalidateICache();
        lv_disp_flush_ready(&disp_drv);
    } else {
    	uint32_t length = (x2_flush - x1_flush + 1);
        buf_to_flush += x2_flush - x1_flush + 1;
        /*##-7- Start the DMA transfer using the interrupt mode ####################*/
        /* Configure the source, destination and buffer size DMA fields and Start DMA Stream transfer */
        /* Enable All the DMA interrupts */
#if LV_COLOR_DEPTH == 24 || LV_COLOR_DEPTH == 32
        length *= 2; /* STM32 DMA uses 16-bit chunks so multiply by 2 for 32-bit color */
#endif
        if(HAL_DMA_Start_IT(han,(uint32_t)buf_to_flush, (uint32_t)&my_fb[y_flush_act * LV_HOR_RES + x1_flush],
                            length) != HAL_OK)
        {
            while(1);	/*Halt on error*/
        }
    }
}
static void DMA_TransferError(DMA_HandleTypeDef *han)
{

}
 void DMA_Config(void)
{
    /*## -1- Enable DMA2 clock #################################################*/
    __HAL_RCC_DMA2_CLK_ENABLE();

    /*##-2- Select the DMA functional Parameters ###############################*/
    DmaHandle.Init.Channel = DMA_CHANNEL;                   		/* DMA_CHANNEL_0                    */
    DmaHandle.Init.Direction = DMA_MEMORY_TO_MEMORY;                /* M2M transfer mode                */
    DmaHandle.Init.PeriphInc = DMA_PINC_ENABLE;                     /* Peripheral increment mode Enable */
    DmaHandle.Init.MemInc = DMA_MINC_ENABLE;                        /* Memory increment mode Enable     */
    DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;   /* Peripheral data alignment : 16bit */
    DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;      /* memory data alignment : 16bit     */
    DmaHandle.Init.Mode = DMA_NORMAL;                               /* Normal DMA mode                  */
    DmaHandle.Init.Priority = DMA_PRIORITY_HIGH;                    /* priority level : high            */
    DmaHandle.Init.FIFOMode = DMA_FIFOMODE_ENABLE;                  /* FIFO mode enabled                */
    DmaHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL; /* FIFO threshold: 1/4 full   */
    DmaHandle.Init.MemBurst = DMA_MBURST_SINGLE;                    /* Memory burst                     */
    DmaHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;                 /* Peripheral burst                 */

    /*##-3- Select the DMA instance to be used for the transfer : DMA2_Stream0 #*/
    DmaHandle.Instance = DMA_STREAM;

    /*##-4- Initialize the DMA stream ##########################################*/
    if(HAL_DMA_Init(&DmaHandle) != HAL_OK)
    {
        while(1)
        {
        }
    }

    /*##-5- Select Callbacks functions called after Transfer complete and Transfer error */
    HAL_DMA_RegisterCallback(&DmaHandle, HAL_DMA_XFER_CPLT_CB_ID, DMA_TransferComplete);
    HAL_DMA_RegisterCallback(&DmaHandle, HAL_DMA_XFER_ERROR_CB_ID, DMA_TransferError);

    /*##-6- Configure NVIC for DMA transfer complete/error interrupts ##########*/
    HAL_NVIC_SetPriority(DMA_STREAM_IRQ, 0, 0);
    HAL_NVIC_EnableIRQ(DMA_STREAM_IRQ);
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Screenshot and/or video

Screenshot of the error I receive.